Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.764
Filtrar
1.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600509

RESUMO

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Assuntos
COVID-19 , Coinfecção , Infecções por Escherichia coli , Humanos , Escherichia coli , Ertapenem/farmacologia , Levofloxacino/farmacologia , Meropeném/farmacologia , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Imipenem/farmacologia , Porinas/genética , Porinas/farmacologia , Testes de Sensibilidade Microbiana
2.
Emerg Microbes Infect ; 13(1): 2332658, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517707

RESUMO

Carbapenem-resistant Enterobacterales (CRE), specifically those resistant to only ertapenem among carbapenems (ETP-mono-resistant), are increasingly reported, while the optimal therapy options remain uncertain. To investigate the prevalence and characteristics of ETP-mono-resistant CRE, CRE strains were systematically collected from 102 hospitals across China between 2018 and 2021. A 1:1 randomized matching study was conducted with ETP-mono-resistant strains to meropenem- and/or imipenem-resistant (MEM/IPM-resistant) strains. Antimicrobial susceptibility testing, whole-genome sequencing, carbapenem-hydrolysing activity and the expression of carbapenemase genes were determined. In total, 18.8% of CRE strains were ETP-mono-resistant, with relatively low ertapenem MIC values. ETP-mono-resistant strains exhibited enhanced susceptibility to ß-lactams, ß-lactam/ß-lactamase inhibitor combinations, levofloxacin, fosfomycin, amikacin and polymyxin than MEM/IPM-resistant strains (P < 0.05). Phylogenetic analysis revealed high genetic diversity among ETP-mono-resistant strains. Extended-spectrum ß-lactamases (ESBLs) and/or AmpC, as well as porin mutations, were identified as potential major mechanisms mediating ETP-mono-resistance, while the presence of carbapenemases was found to be the key factor distinguishing the carbapenem-resistant phenotypes between the two groups (P < 0.001). Compared with the MEM/IPM-resistant group, limited carbapenemase-producing CRE (CP-CRE) strains in the ETP-mono-resistant group showed a significantly lower prevalence of ESBLs and porin mutations, along with reduced expression of carbapenemase. Remarkably, spot assays combined with modified carbapenem inactivation method indicated that ETP-mono-resistant CP-CRE isolates grew at meropenem concentrations eightfold above their corresponding MIC values, accompanied by rapidly enhanced carbapenem-hydrolysing ability. These findings illustrate that ETP-mono-resistant CRE strains are relatively prevalent and that caution should be exercised when using meropenem alone for treatment. The detection of carbapenemase should be prioritized.


Assuntos
Antibacterianos , Carbapenêmicos , Ertapenem/farmacologia , Meropeném , Antibacterianos/farmacologia , Prevalência , Filogenia , Carbapenêmicos/farmacologia , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Porinas/genética , Testes de Sensibilidade Microbiana
3.
Microbiol Spectr ; 12(4): e0391823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441474

RESUMO

The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Azitromicina/farmacologia , Colistina/farmacologia , Regulação para Cima , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Porinas/genética , Porinas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/metabolismo
4.
Protein Sci ; 33(3): e4912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358254

RESUMO

Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.


Assuntos
Mycobacterium , Triptofano , Triptofano/metabolismo , Porinas/química , Porinas/genética , Porinas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Metionina/metabolismo
5.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301890

RESUMO

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Assuntos
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/toxicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
6.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 1): 22-27, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206593

RESUMO

Conjugation is the process by which plasmids, including those that carry antibiotic-resistance genes, are mobilized from one bacterium (the donor) to another (the recipient). The conjugation efficiency of IncF-like plasmids relies on the formation of mating-pair stabilization via intimate interactions between outer membrane proteins on the donor (a plasmid-encoded TraN isoform) and recipient bacteria. Conjugation of the R100-1 plasmid into Escherichia coli and Klebsiella pneumoniae (KP) recipients relies on pairing between the plasmid-encoded TraNα in the donor and OmpW in the recipient. Here, the crystal structure of K. pneumoniae OmpW (OmpWKP) is reported at 3.2 Šresolution. OmpWKP forms an eight-stranded ß-barrel flanked by extracellular loops. The structures of E. coli OmpW (OmpWEC) and OmpWKP show high conservation despite sequence variability in the extracellular loops.


Assuntos
Escherichia coli , Porinas , Porinas/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Cristalografia por Raios X , Antibacterianos
7.
PLoS One ; 19(1): e0291801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206953

RESUMO

Phylogenetic analysis of protein sequences provides a powerful means of identifying novel protein functions and subfamilies, and for identifying and resolving annotation errors. However, automation of functional clustering based on phylogenetic trees has been challenging and most of it is done manually. Clustering phylogenetic trees usually requires the delineation of tree-based thresholds (e.g., distances), leading to an ad hoc problem. We propose a new phylogenetic clustering approach that identifies clusters without using ad hoc distances or other pre-defined values. Our workflow combines uniform manifold approximation and projection (UMAP) with Gaussian mixture models as a k-means like procedure to automatically group sequences into clusters. We then apply a "second pass" clade identification algorithm to resolve non-monophyletic groups. We tested our approach with several well-curated protein families (outer membrane porins, acyltransferase, and nuclear receptors) and showed our automated methods recapitulated known subfamilies. We also applied our methods to a broad range of different protein families from multiple databases, including Pfam, PANTHER, and UniProt, and to alignments of RNA viral genomes. Our results showed that AutoPhy rapidly generated monophyletic clusters (subfamilies) within phylogenetic trees evolving at very different rates both within and among phylogenies. The phylogenetic clusters generated by AutoPhy resolved misannotations and identified new protein functional groups and novel viral strains.


Assuntos
Algoritmos , Proteínas , Filogenia , Proteínas/genética , Porinas/genética , Sequência de Aminoácidos
8.
Int J Antimicrob Agents ; 63(1): 107030, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931849

RESUMO

OBJECTIVES: To investigate a ceftazidime/avibactam (CZA)-resistant Klebsiella pneumoniae (NE368), isolated from a patient exposed to CZA, expressing a novel K. pneumoniae carbapenemase (KPC)-3 variant (KPC-109). METHODS: Antimicrobial susceptibility testing was performed by reference broth microdilution. Whole-genome sequencing (WGS) analysis of NE368 was performed combining a short- and long-reads approach (Illumina and Oxford Nanopore Technologies). Functional characterization of KPC-109 was performed to investigate the impact of KPC-109 production on the ß-lactam resistance phenotype of various Escherichia coli and Klebsiella pneumoniae strains, including derivatives of K. pneumoniae with OmpK35 and OmpK36 porin alterations. Horizontal transfer of the KPC-109-encoding plasmid was investigated by conjugation and transformation experiments. RESULTS: K. pneumoniae NE368 was isolated from a patient after repeated CZA exposure, and showed resistance to CZA, fluoroquinolones, piperacillin/tazobactam, expanded-spectrum cephalosporins, amikacin, carbapenems and cefiderocol. WGS revealed the presence of a large chimeric plasmid of original structure (pKPN-NE368), encoding a novel 270-loop mutated KPC-3 variant (KPC-109; ins_270_KYNKDD). KPC-109 production mediated resistance/decreased susceptibility to avibactam-based combinations (with ceftazidime, cefepime and aztreonam) and cefiderocol, with a trade-off on carbapenem resistance. However, in the presence of porin alterations commonly encountered in high-risk clonal lineages of K. pneumoniae, KPC-109 was also able to confer clinical-level resistance to carbapenems. Resistance of NE368 to cefiderocol was likely contributed by KPC-109 production acting in concert with a mutated EnvZ sensor kinase. The KPC-109-encoding plasmid did not appear to be conjugative. CONCLUSIONS: These findings expand current knowledge about the diversity of emerging KPC enzyme variants with 270-loop alterations that can be encountered in the clinical setting.


Assuntos
Antibacterianos , Ceftazidima , Humanos , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Klebsiella pneumoniae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Compostos Azabicíclicos/farmacologia , Carbapenêmicos/farmacologia , Combinação de Medicamentos , Porinas/genética , Testes de Sensibilidade Microbiana
9.
Metab Eng ; 81: 227-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072357

RESUMO

5-Aminovaleric acid (5-AVA), 5-hydroxyvalerate (5HV), copolymer P(3HB-co-5HV) of 3-hydroxybutyrate (3HB) and 5HV were produced from L-lysine as a substrate by recombinant Halomonas bluephagenesis constructed based on codon optimization, deletions of competitive pathway and L-lysine export protein, and three copies of davBA genes encoding L-lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) inserted into its genome to form H. bluephagenesis YF117ΔgabT1+2, which produced 16.4 g L-1 and 67.4 g L-1 5-AVA in flask cultures and in 7 L bioreactor, respectively. It was able to de novo synthesize 5-AVA from glucose by L-lysine-overproducing H. bluephagenesis TD226. Corn steep liquor was used instead of yeast extract for cost reduction during the 5-AVA production. Using promoter engineering based on Pporin mutant library for downstream genes, H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC produced 6 g L-1 5HV in shake flask growth, while H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC-Pporin278-phaCRE-abfT synthesized 42 wt% P(3HB-co-4.8 mol% 5HV) under the same condition. Thus, H. bluephagenesis was successfully engineered to produce 5-AVA and 5HV in supernatant and intracellular P(3HB-co-5HV) utilizing L-lysine as the substrate.


Assuntos
Halomonas , Engenharia Metabólica , Lisina/genética , Lisina/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Poliésteres/metabolismo , Porinas/genética , Porinas/metabolismo
10.
Gene ; 893: 147921, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37884102

RESUMO

ß-lactams and quinolones are widely utilised to treat pathogenic Enterobacterial isolates worldwide. Due to improper use of these antibiotics, both ESBL producing and quinolone resistant (ESBL-QR) pathogenic bacteria have emerged. Nature of contribution of beta-lactamase (bla)/quinolone resistant (QR) genes, efflux pumps (AcrAB-TolC) over-expression and outer membrane proteins (OMPs) /porin loss/reduction and their combinations towards development of this phenotype were explored in this study. Kirby-Bauer disc diffusion method was used for phenotypic characterization of these bacteria and minimum inhibitory concentration of cefotaxime and ciprofloxacin was determined by broth micro dilution assay. Presence of bla, QR, gyrA/B genes was examined by PCR; acrB upregulation by real-time quantitative PCR and porin loss/reduction by SDS-PAGE. Based on antibiogram, phenotypic categorization of 715 non-duplicate clinical isolates was: ESBL+QR+ (n = 265), ESBL+QR- (n = 6), ESBL-QR+ (n = 346) and ESBL-QR-(n = 11). Increased OmpF/K35 and OmpC/K36 reduction, acrB up-regulation, prevalence of bla, QR genes and gyrA/B mutation was observed among the groups in following order: ESBL+QR+> ESBL-QR+> ESBL+QR-> ESBL-QR-. Presence of bla gene alone or combined porin loss and efflux pump upregulation or their combination contributed most for development of a highest level of cefotaxime resistance of ESBL+QR+ isolates. Similarly, combined presence of QR genes, porin loss/reduction, efflux pump upregulation and gyrA/B mutation contributed towards highest ciprofloxacin resistance development of these isolates.


Assuntos
Cefotaxima , Quinolonas , Cefotaxima/farmacologia , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Porinas/genética , Testes de Sensibilidade Microbiana
11.
ACS Infect Dis ; 10(1): 127-137, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38104323

RESUMO

The antibiotic fosfomycin (FOS) is widely recognized for the treatment of lower urinary tract infections with Escherichia coli and has lately gained importance as a therapeutic option to combat multidrug-resistant bacteria. However, resistance to FOS frequently develops through mutations reducing its uptake. Although the inner-membrane transport of FOS has been extensively studied in E. coli, its outer-membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompFΔompC strain is four times more resistant to FOS than the wild type and the respective single mutants. Continuous monitoring of FOS-induced lysis of porin-deficient strains additionally highlighted the importance of LamB. The relevance of OmpF, OmpC, and LamB to FOS uptake was confirmed by electrophysiological and transcriptional analysis. Our study gives for the first time in-depth insight into the transport of FOS through the OM in E. coli.


Assuntos
Proteínas de Escherichia coli , Fosfomicina , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfomicina/farmacologia , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Porinas/genética , Porinas/metabolismo
12.
Amino Acids ; 55(12): 1965-1980, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37966500

RESUMO

Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The proper treatment choice for MDR-KP infections is not well determined which renders the problem more complicated, thus making the control of such infections a serious challenge for healthcare professionals. This study aims to encapsulate the cationic antimicrobial peptide; Cecropin-B (Cec-B), to increase its lifetime, drug targeting, and efficacy and study the antimicrobial effect of free and encapsulated recombinant rCec-B peptide on multidrug-resistant K. pneumoniae (MDR-KP) isolates. Fifty isolates were collected from different clinical departments at Theodore Bilharz Research Institute. Minimal inhibitory concentrations (MICs) of rCec-B against MDR-KP isolates were determined by the broth microdilution test. In addition, encapsulation of rCec-B peptide into chitosan nanoparticles and studying its bactericidal effect against MDR-KP isolates were also performed. The relative expression of efflux pump and porin coding genes (ArcrB, TolC, mtdK, and Ompk35) was detected by quantitative PCR in treated MDR-KP bacterial isolates compared to untreated isolates. Out of 60 clinical MDR isolates, 50 were MDR-KP. 60% of the isolates were XDR while 40% were MDR. rCec-B were bactericidal on 21 isolates, then these isolates were subjected to treatment using free nanocapsule in addition to the encapsulated peptide. Free capsules showed a mild cytotoxic effect on MDR-KP at the highest concentration. MIC of encapsulated rCec-B was higher than the free peptide. The expression level of genes encoding efflux and porin (ArcrB, TolC, mtdK, and Ompk35) was downregulated after treatment with encapsulated rCec-B. These findings indicate that encapsulated rCec-B is a promising candidate with potent antibacterial activities against drug-resistant K. pneumoniae.


Assuntos
Cecropinas , Quitosana , Infecções por Klebsiella , Nanopartículas , Humanos , Klebsiella pneumoniae , Quitosana/farmacologia , Quitosana/uso terapêutico , Cecropinas/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Porinas/genética , Porinas/farmacologia , Porinas/uso terapêutico , Testes de Sensibilidade Microbiana
13.
J Clin Microbiol ; 61(11): e0061723, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37823665

RESUMO

Carbapenem resistance is a major concern in the management of antibiotic-resistant Pseudomonas aeruginosa infections. The direct prediction of carbapenem-resistant phenotype from genotype in P. aeruginosa isolates and clinical samples would promote timely antibiotic therapy. The complex carbapenem resistance mechanism and the high prevalence of variant-driven carbapenem resistance in P. aeruginosa make it challenging to predict the carbapenem-resistant phenotype through the genotype. In this study, using whole genome sequencing (WGS) data of 1,622 P. aeruginosa isolates followed by machine learning, we screened 16 and 31 key gene features associated with imipenem (IPM) and meropenem (MEM) resistance in P. aeruginosa, including oprD(HIGH), and constructed the resistance prediction models. The areas under the curves of the IPM and MEM resistance prediction models were 0.906 and 0.925, respectively. For the direct prediction of carbapenem resistance in P. aeruginosa from clinical samples by the key gene features selected and prediction models constructed, 72 P. aeruginosa-positive sputum samples were collected and sequenced by metagenomic sequencing (MGS) based on next-generation sequencing (NGS) or Oxford Nanopore Technology (ONT). The prediction applicability of MGS based on NGS outperformed that of MGS based on ONT. In 72 P. aeruginosa-positive sputum samples, 65.0% (26/40) of IPM-insensitive and 63.2% (24/38) of MEM-insensitive P. aeruginosa were directly predicted by NGS-based MGS with positive predictive values of 0.897 and 0.889, respectively. By the direct detection of the key gene features associated with carbapenem resistance of P. aeruginosa, the carbapenem resistance of P. aeruginosa could be directly predicted from cultured isolates by WGS or from clinical samples by NGS-based MGS, which could assist the timely treatment and surveillance of carbapenem-resistant P. aeruginosa.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Sequenciamento Completo do Genoma , beta-Lactamases/genética , Porinas/genética , Farmacorresistência Bacteriana/genética
14.
Microbiol Spectr ; 11(6): e0292223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787563

RESUMO

IMPORTANCE: Carbapenem resistance arising from the loss of porins is commonly observed in extended-spectrum ß-lactamase (ESBL) and AmpC ß-lactamase-producing strains of certain Enterobacteriaceae genera, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. However, this resistance mechanism is rarely reported in the Salmonella genus. To address this knowledge gap, our study offers genetic evidence demonstrating that the loss of two specific porins (OmpC_378 and OmpD) is crucial for the development of carbapenem resistance in Salmonella ESBL and AmpC ß-lactamase-producing strains. Furthermore, our findings reveal that most Salmonella serovars carry seven porin parathologs, with OmpC_378 and OmpD being the key porins involved in the development of carbapenem resistance in Salmonella strains.


Assuntos
Antibacterianos , Salmonella enterica , Antibacterianos/farmacologia , Sorogrupo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Salmonella , Escherichia coli/genética , Carbapenêmicos/farmacologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Porinas/genética , Testes de Sensibilidade Microbiana
15.
J Mol Biol ; 435(22): 168292, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769963

RESUMO

In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane ß-barrels, duplication is visible with ß-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane ß-barrels. Specifically, the topology of some 16- and 18-stranded ß-barrels appear to have evolved through a loop to ß-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded ß-barrel and an evolutionarily related 16-stranded ß-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane ß-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to ß-hairpin transition.


Assuntos
Proteínas da Membrana Bacteriana Externa , Porinas , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Evolução Molecular Direcionada , Porinas/química , Porinas/genética , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Dobramento de Proteína , Conformação Proteica em Folha beta
16.
J Glob Antimicrob Resist ; 35: 159-162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751846

RESUMO

OBJECTIVES: The aim of this study was to characterize the blaKPC-33 in a ST15-K19 ceftazidime-avibactam (CAZ-AVI)-resistant Klebsiella pneumoniae strain after the antibiotic CAZ-AVI was approved for use in Wuxi No. 2 People's Hospital, China. METHODS: Antimicrobial susceptibility testing was performed by the microdilution broth method. Whole genome sequencing (WGS) was performed using PacBio II and MiSeq sequencers. High-quality reads were assembled using the SOAPdenovo and GapCloser v1.12, and genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). Genomic characteristics were analysed by using bioinformatics methods. RESULTS: K. pneumoniae strain KPHRJ showed resistance to CAZ-AVI. WGS analysis showed that strain KPHRJ had one 5 536 506 bp chromosome (57.25% G+C content) and one plasmid (133 451 bp, G+C 54.29%). KPHRJ was classified as ST15 and K19 serotype. Resistome analysis showed that KPHRJ carries seven antimicrobial resistance genes (ARGs). WGS analysis and conjugation experiments demonstrated that the blaKPC-33 gene was carried by plasmid pKPHRJ, flanked by two copies of IS26 mobile elements (IS26-ISKpn27-blaKPC-33-ISKpn6-korC-TnAs1-tetR-tetA-Tn3-IS26). Besides these acquired resistance genes, mutations in porin protein-coding genes, such as OmpK36 and OmpK37, which may reduce susceptibility to the CAZ-AVI, were also identified from the genome. CONCLUSION: Here, we present the WGS of a CAZ-AVI resistant K. pneumoniae isolate, strain KPHRJ, with capsular serotype K19 and belonging to ST15. CAZ-AVI resistance is likely conferred by a KPC-2 variant, blaKPC-33 and mutations in porin-coding genes. We speculate that the approval of the CAZ-AVI in hospital could contribute to the emergence of these genomic features by providing a selective pressure leading to the emergence of CAZ-AVI resistant bacteria.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Sorogrupo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Porinas/genética , China
17.
Sci Rep ; 13(1): 13949, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626115

RESUMO

The Escherichia marmotae is a bacterium of the Enterobacterales order, which was first isolated from the Himalayan marmot (Marmota himalayana). Recently E. marmotae has been shown to cause severe infections in humans. Wild animals were suggested to be a natural reservoir of this bacterium. The present study describes the first case of E. marmotae isolation from an apparently healthy wild bank vole (Myodes glareolus). Phenotype, as well as genotype-based techniques, were applied to characterize E. marmotae M-12 isolate. E. marmotae M-12 had the capsule-positive phenotype, high adhesion to human erythrocytes and HEp-2 cells as well as a low invasion into HEp-2 cells. E. marmotae M-12 was avirulent in mice. The phylogenomic analyses of E. marmotae showed dispersed phylogenetic structure among isolates of different origins. Virulome analysis of M-12 isolate revealed the presence of the following factors: siderophores, heme uptake systems, capsule synthesis, curli and type I fimbriae, flagella proteins, OmpA porin, etc. Comparative virulome analysis among available E. marmotae genomes revealed the presence of capsule K1 genes mostly in pathogenic isolates and OmpA porin presence among all strains. We assume that the K1 capsule and OmpA porin play a key role in the virulence of E. marmotae. Pathogenesis of the latter might be similar to extraintestinal pathogenic E. coli.


Assuntos
Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Animais , Camundongos , Filogenia , Arvicolinae , Marmota , Porinas/genética
18.
Braz J Biol ; 83: e269946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283335

RESUMO

The isolation of multidrug-resistant Klebsiella pneumoniae in hospitals is a major public health threat, increasing patient hospitalization costs, morbidity and mortality. Therefore, this work investigated the resistance mechanisms that produced different carbapenems susceptibility profiles in two isogenic strains of K. pneumoniae isolated from the same patient in a public hospital in Recife, Pernambuco. The genes that encode the main porins in K. pneumoniae, ompK35 and ompK36, and several beta-lactamase genes were analyzed. The expression of these genes was evaluated by quantitative real time PCR (polymerase chain reaction) with reverse transcriptase (RT-qPCR). SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) was performed to analyze the outer membrane proteins. The analysis of the ompK36 genetic environment disclosed an IS903 insertion sequence disrupting this gene in the ertapenem resistant isolate (KPN133). The blaKPC-2 gene showed down-regulated expression in both isolates. Our findings show that changes in porins, especially OmpK36, are more determinant to carbapenems susceptibility profile of bacterial isolates than variations in blaKPC gene expression.


Assuntos
Carbapenêmicos , Infecções por Klebsiella , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecções por Klebsiella/microbiologia , Porinas/genética , Porinas/metabolismo , Testes de Sensibilidade Microbiana
19.
Acta Microbiol Immunol Hung ; 70(3): 206-212, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37342895

RESUMO

Globally, the spread of carbapenem-resistant strains has limited treatment options for multidrug-resistant (MDR) Pseudomonas aeruginosa infections. This study aimed to determine the role of point mutations as well as the expression level of the oprD gene in the emergence of imipenem-resistant P. aeruginosa strains isolated from patients referred to Ardabil hospitals. A total of 48 imipenem-resistant clinical isolates of P. aeruginosa collected between June 2019 and January 2022 were used in this study. Detection of the oprD gene and its amino acid alterations was performed using the polymerase chain reaction (PCR) and DNA sequencing techniques. The expression level of the oprD gene in imipenem-resistant strains was determined using the real-time quantitative reverse transcription PCR (RT-PCR) method. All imipenem-resistant P. aeruginosa strains were positive for the oprD gene based on the PCR results, and also five selected isolates indicated one or more amino acid alterations. Detected amino acid alterations in the OprD porin were Ala210Ile, Gln202Glu, Ala189Val, Ala186Pro, Leu170Phe, Leu127Val, Thr115Lys, and Ser103Thr. Based on the RT-PCR results, the oprD gene was downregulated in 79.1% of imipenem-resistant P. aeruginosa strains. However, 20.9% of strains showed overexpression of the oprD gene. Probably, resistance to imipenem in these strains is associated with the presence of carbapenemases, AmpC cephalosporinase, or efflux pumps. Owing to the high prevalence of imipenem-resistant P. aeruginosa strains due to various resistance mechanisms in Ardabil hospitals, the implementation of surveillance programs to reduce the spread of these resistant microorganisms along with rational selection and prescription of antibiotics is recommended.


Assuntos
Imipenem , Infecções por Pseudomonas , Humanos , Imipenem/farmacologia , Imipenem/metabolismo , Imipenem/uso terapêutico , Pseudomonas aeruginosa/genética , Porinas/genética , Porinas/metabolismo , Porinas/uso terapêutico , Aminoácidos/metabolismo , Aminoácidos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
20.
Virulence ; 14(1): 2215602, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37221835

RESUMO

BACKGROUND: Mycobacterium abscessus subspecies massiliense (M. massiliense) is increasingly recognized as an emerging bacterial pathogen, particularly in cystic fibrosis (CF) patients and CF centres' respiratory outbreaks. We characterized genomic and phenotypic changes in 15 serial isolates from two CF patients (1S and 2B) with chronic pulmonary M. massiliense infection leading to death, as well as four isolates from a CF centre outbreak in which patient 2B was the index case. RESULTS: Comparative genomic analysis revealed the mutations affecting growth rate, metabolism, transport, lipids (loss of glycopeptidolipids), antibiotic susceptibility (macrolides and aminoglycosides resistance), and virulence factors. Mutations in 23S rRNA, mmpL4, porin locus and tetR genes occurred in isolates from both CF patients. Interestingly, we identified two different spontaneous mutation events at the mycobacterial porin locus: a fusion of two tandem porin paralogs in patient 1S and a partial deletion of the first porin paralog in patient 2B. These genomic changes correlated with reduced porin protein expression, diminished 14C-glucose uptake, slower bacterial growth rates, and enhanced TNF-α induction in mycobacteria-infected THP-1 human cells. Porin gene complementation of porin mutants partly restored 14C-glucose uptake, growth rate and TNF-α levels to those of intact porin strains. CONCLUSIONS: We hypothesize that specific mutations accumulated and maintained over time in M. massiliense, including mutations shared among transmissible strains, collectively lead to more virulent, host adapted lineages in CF patients and other susceptible hosts.


Assuntos
Fibrose Cística , Mycobacterium abscessus , Mycobacterium , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/microbiologia , Genômica , Glucose , Pulmão , Mutação , Mycobacterium/genética , Mycobacterium abscessus/genética , Fator de Necrose Tumoral alfa/genética , Porinas/genética , Porinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...